National workshop on Environment and Climate Change Statistics

Ministry Of Agriculture, Land Use Division

By- Trevor Thompson

Chief Land Use Officer (Ag)

Presentation Overview - Questions

- **1.** National experience on GIS/Land cover work
- 2. Overview of national data on land cover and land use, cadastral data: timeseries of land cover change, classifications.
- **3.** Who does official GIS/land cover work, what satellite/aerial information was used, what is the land-cover data used for?
- 4. Are there multiple data sources, are the data comparable?
- 5. Is the attached data compiled from international sources (please see sheet 6 and 7) coherent with national data?

GIS IN GRENADA

- Established under FAO Project in 1994-1995
- Expanded under CPACC Project in 1997-2000
- Upgraded under the MACC Project 2004-07
- Upgraded Under GEF IWCAM 2010-2012
- Improved under RDVRP/DVRP 2013-15
- IMPROVED UNDER EU OECS GCCA -2015-2018

Software

- ARCGIS: including ArcMap, ArcCatalog, ArcToolbox
- Spatial analyst
- 3D analyst
- Image analyst
- ArcView 3.2a
- ALES (Automated Land Evaluation System)
- Microsoft Office
- FAO SDBM (Soil Database Program)
- FAO APT (Agricultural Planning Toolkit Program)
- ECOCROP1

Some GLIS Outputs

- 1. Physical Land Suitability Assessment for forestry (21 species)
- 2. Physical Land Suitability Assessment for rainfed cropping (42 crops)
- 3. Economic Land Suitability for rainfed cropping at high and low levels of inputs
- 4. High quality Cartographic Maps outputs for Specific User Needs
- 5. Climate Change- Sea Level Rise Impact, Flood and Landslide Hazard Maps, etc.
- 6. Networking-Route Direction, Facility mapping etc.

National Experience-Operation Constraints

- Licenses cost.
- Human resource.
- Training resource.
- Cost of High resolution imagery.
- Cost of GIS computing hardware.
- Time between New Mapping ventures
 Positives
- Revolutionize Mapping
- Ease of Access to Data
- Up to date outputs
- Timely Recommendations

Sea level rise Impact on coastal Areas

Sea Level Rise SLR1 = 0.2 meters for 2020 SLR2 = 0.5 meters for 2050 SLR3 = 1 meter for 2100 **Southwest Impact Areas**

EAST COAST IMPACT

Land Parcels

Organization Responsible GIS/Land Cover Mapping.

Ministry of Agriculture, Land Use Division

Collaborate With Many Stakeholders:

- PPU
- INLAND REVENUE
- LANDS & SURVEYS
- MINISTRY OF WORKS
- NAWASA
- CLIMATE RESILIENCE
- ENVIRONMENT
- FORSTRY
- CENTRALS STATISTICS
- GRENADA PORT AUTHORITY
 MARIA MAET SERVICES

Land Cover and Land Use

USES:

- Land use planning
- Agricultural planning.
- Physical development planning.
- Environment Management & Assessment.
- Coastal Zone Management.
- Historical references
- Disaster recovery/ Damage Assessments
- Studies and Reports.
- Consultancy
- Research

Current Land Cover / Land Use Map

Year	Remote Sensor source	Land Cover	Land Use
1982	Aerial Photography	X	
2000	Ikonos 5m Satellite	X	Х
2010	Ikonos 5m Satellite	X	Х

1982 Land Cover map

Legend

2000 Land Use Map

2010 Land Use Map

LAND USE TYPES 2000 vs 2009

Land Use Types	Grenada 2000	%	Grenada 2009	%
Abandon cropland	359.00	1.14%	6,122.15	19.54%
Annual cropland	1,456.00	4.64%	1,583.69	5.05%
Beach	53.00	0.17%	50.66	0.16%
Forest	6,835.00	21.79%	7,204.22	22.99%
Mangrove	172.00	0.55%	159.31	0.51%
Pasture & Grazing	140.00	0.45%	0.00	0.00%
Perennial	16,282.00	51.90%	9,707.08	30.98%
Protected Area's	2,481.00	7.91%	2,481.78	7.92%
Shrub & Grassland	1,730.00	5.51%	1,718.13	5.48%
Urban & Buildup				
area	1,825.00	5.82%	2,266.72	7.23%
Water	40.32	0.13%	40.32	0.13%
Total Area Ha	31,373.32		31,333.79	

• Lidar and imagery data collection campaign (from 10/11 to 25/11)

Example of data (picture): GSD : 5cm

Lidar and Imagery – Products, Uses and Benefits

Lidar Technology and Products

Imagery Products

Imagery - Full Resolution

Lidar Products

Digital Terrain Model (DTM)

Data Quality Evolution

Digital Terrain Model – Resolution and Detail

^{25 m (1950s Topo Map)} 5 m (2010 Lidar) 0.5 m (2018 Lidar)

Lidar and Imagery – Uses and Benefits

Natural Hazard Risk Mitigation

fi i

-

Flood Mapping

Numerical Simulation for Flash Flood Protection

Digital Terrain Model Flood Risk Map **Runoff Analysis Protection Measure** Perseveranc Est kw (1)Brizan Richmo svr Bay Grenville Vale Est. kw At Monitz Land Smt. Hermitage SL kw = kinematic Mt Morice wave Snug Corne sv = Saint Venant l Bay kw

Landslide Risks

Identifying Endagered Infrastructure

Digital Terrain Model

Slope and Soil Analysis

Risk Map

Land Use, Forestry

Forestry

Natural Resource Inventory and Management

Forestry and Agriculture

Plant Population Inventory and Health Monitoring

Species Inventory Plant Health – Infrared Improved Cultivation

Physical Planning

3D Models

As-Built Inventory

SD Models for visualizations and planning Terrain Model and Contours directly availabe Semi-automated 3D Building Model and building footprint extraction from classified Lidar data Provide detailed, current 3D base data to planners and developers

Solar Energy Potential

Optimizing Photovoltaic Yields

 Simulation of sun incidence per roof area based on the Digital Surface Model (DSM)
 Identify roofs with high potential for generating photovoltaic energy
 Reduce Grenada's dependence on fossil energy
 Reduce output of greenhouse gases

GOUYAVE GRENADA

THE FISHING **D**E APMAL

Utility Lines

Inventory and Planning

Science and Environment

Marine Science

Understanding and Protecting Coastal Habitats

Bathymetry Data

Aerial Imagery

Protection Measures

Future Plans

- To use the 2017 LIDAR Imagery to generate a new Land Use and Land Cover map.
- Explore use of drone in the updating of future Land use/land cover map.
- Support implementation of National Land Policy, to support decision making at all scales
- Accelerate growth in data availability
- Vulnerability reduction Projects
- Safe development of any part of the territory
- To improve access to and interoperability of cadastral and mapping data
- The strategic decision to make now is not whether, but when and how to use GIS to support decisions at all levels

The End